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Abstract

This paper contributes to a recent series discussing quantum mechanics defined on a finite-dimensional
Hilbert space in which Weyl’s commutation relation for unitary operators holds. In an earlier paper,
Santhanam and Tekumalla (1976) showed that the commutation relation for hermitian operators
with a bounded spectrum tends to Heisenberg’s standard canonical commutation relation as the
spectrum becomes continuous and the dimension » — co. The present paper offers a formulation
which is coordinate free in the limit » — oo and makes the limiting procedure especially transparent.

Introduction

It is well known that, of two or more hermitian operators which satisfy
Heisenberg’s (1925) canonical commutation relation (hereafter referred to as CCR),
at least one of them necessarily has an unbounded spectrum. The corresponding
Hilbert space is therefore infinite dimensional. On the-other hand, two hermitian
operators defined on a finite-dimensional space do. not satisfy the standard CCR.
It is thus natural to inquire whether an analogue of the CCR can be found for opera-
tors with a discrete bounded spectrum acting on a finite-dimensional vector space.
The answer is yes. Weyl (1931) rewrote the CCR in an exponential form using
unitary operators, and his formulation permits bounded operators.

Weyl’s formulation has provided the basis for a recent series of papers (Santhanam
and Tekumalla 1976; Santhanam 1976, 1977) which have discussed quantum
mechanics defined on a finite-dimensional Hilbert space. The principal idea was to
start with Weyl’s (1931) commutation relation for two operators of the Abelian
group of unitary rotations in ray space. When the group is continuous, the resulting
formulation is identical with that of Heisenberg (1925) but, when the group is
discrete or discrete—continuous, further possibilities open up. “

Weyl’s formulation makes use of unitary operators, and many difficulties which
arise from restrictions on the domain do not appear in it. In particular, Santhanam
(1977) showed that operators with a discrete bounded spectrum (like the angular
momentum operators) satisfy Weyl’s commutation relation. An interesting con-
sequence also revealed by Santhanam is that, when properly interpreted, Weyl’s
commutation relation implies a generalized statistics.

* Starting with Weyl’s formulation, Santhanam and Tekumalla (1976) calculated
the commutation relation between two hermitian operators (defined as the generators
of the unitary transformation). They demonstrated that this relation reduces to the
standard CCR as the spectrum becomes continuous and the dimension n — co.
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However, in their derivation, they used an explicit matrix representation for operators
satisfying Weyl’s commutation relation. In the present paper, we develop a form-
ulation which is coordinate free in the limit and which makes the limiting procedure
especially clear.

Quantum Mechanics in Finite Dimensions
In the n-dimensional Euclidean space k™, we choose the orthonormal basis

v, = (0,0,...,1,..,00 for r=1,2..n, )

where the 1 resides in the rth column of the rth unit vector. Let us now consider
the two operators N and U, defined such that

N'/lr = (r_l)'l/r’ (2)
Uy, = Y41 for r<n, (3a)
Ubhy =i | @b)

It is trivial to see that in the basis (1) the following matrix representations hold for
N and U:

N = diag[0, 1,2, ...,n—1], G
Ups = 6,51 for r<n, s<mn, (52)
Uns = 51,3 s<n, (Sb)

where 9;; is the Kronecker delta function. It is also trivial to see that the two
selected operators U and N have the following properties:

Ur =1, (62)
Vr =1, where - V = exp(NIneg), (6b)

with & = exp(2ri/n) being the nth primitive root of unity.
Furthermore, it is easily secen that N and U jointly satisfy

(NU=UN), = Uy, = (U~-nUP), for r<n, (T2)

where P, is the projection into the one-dimensional subspace spanned by y, (for
r =1,2,..,n). On the other hand, for r = n we have

(NU-UNW, = Ny, —(n—1D)UY, = Uy, —nUY,
= (U—-nUPYY,. B (7b)
Thus, we conclude that the following relation holds:
[N,U] = U—-nUP,. 8)
Now, it is clear from the equations (5) that U is unitary

utv=0Ut=1, ®
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and so equation (8) can be rewritten in the form
U INU=N+1-nP,. (10)

The last term on the right-hand side of equation (10) takes care of both the finite nature
of the spectrum of N and the cyclic nature of U as defined in (5). Since both sides of
equation (10) are self adjoint and P, commutes with N, we can exponentiate to get

exp(—it(U "' NU)) = exp(—itN)exp(—it) exp(itnP,) for —oo <t < 0, (11)
or
exp(—itN) Uexp(itN) = Uexp(—ir) exp(itn P,) . (12)
Writing
t =2n/n ' 13)
and recognizing that
exp(i2nP,) =1, (14)

allows us to reduce equation (12) to
eUexp(2niN[n) = exp(2niN/n) U, (15)

which is Weyl’s commutation relation.
Writing f(N) in terms of the projection operators as

| @ = ¥ fe-DP, a6
gives .
seyup, = ( § se-vr)ur, = ( § se-nr)p,ue,
r=1 r=1
- fOUP,, an

where we have used
: UP, = P,UP,. (13)

Multiplying equation (8) to the left by f(N) and setting
A=f(N)U (19)
we get (using equation 17)
[N,A] = A—nf(O)UP, 0
and, for functions for which f(0) = 0, we have

[N, 4] = 4. 03]

Thus we see that when f(N) = /N, for instance, the operator 4 can be interpreted
as the creation operator a', and in this case we have

[N,a'] = a'. 22)

When interpreted properly, this relation has been shown to imply a generalized
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statistics (Santhanam 1977). Finally we point out that another function for which
f(0) =0is
JS(N) = sin(2zN/n). 23)

Limiting Procedure

So far we have looked at x™ for finite n. To see what happens in the limit as
n — oo, we imbed ™ in an infinite-dimensional x with basis ¥, (r = 1,2, ..., ).
Writing N™ and U™ as the imbedded rank » operators given by the equations (4)
and (5), we want to show that N® and U™ converge strongly.

Let U be an isometric (one-side unitary) operator on x defined by

N ) Ulpr = ‘pr+1 . ’ (24)
Then clearly we have
o U-UMy, =0 for r<n, (25)
and hence ,
! 1
U-U>S ay, =0 for I<n. (26)
=1 B
Therefore Co
(U-UM)g -0 as n— 27
for all g of the form ‘ \
!
g=> 4y, | arbitrary . (28)
r=1 N
Such g form a dense set in k. Since || U™ || =1 = || U}| it follows that U™ con-

verges strongly (i.e. on all vectors in k) to U.
Let N be defined by

Ny, = (r—=1y, for r=1,2,..,00, (29)
then N is an unbounded operator with the domain
D(N) = {gerc 9= Y %
Ylul? <o, Se-17lal? <o), G0
1 1 :

which is dense. It is trivial to see that N converges strongly to N on Z(N).
For g € Z(N) we have : ‘

"
Ung = Z o U™ s
F=1

n—1
= kZ1 G Wprr +0, Y

The operation of U™ leaves 2(V) invariant and so too does that of U.
In order to see that :
nU™P,g : (€2))

converges strongly to zero as n — oo we restate this expression as follows

nU®P,g =nUDP,Y afy, = no, ;. | (32)
k=1
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As a consequence of equation (32) we obtain

[[nU®P,g|| = [na,| >0, (33)
since we have

Y |no,|* <

n=0
from the definition (30) of 2(N), given that g € 2(N) holds. Combining the results
(32) and (33) with equation (8) we see that the commutation relation

[N®, U®]g = (U™ —nU® P,)g (34)
converges to
[V.Ulg = Ug (33)

for all g € 2(N). We note that equation (35) formed the basis for the result obtained
by Santhanam (1977) that a generalized statistics implied in finite dimensions goes
over to Bose statistics as n — 0.

Since U is only isometric and not unitary, it is not in general possible to write
U = exp(i¢). But, assuming that it is possible to do so, we may write

U(t) = exp(—itN) Uexp(itN) 36)

to obtain the differential equation

dU@)/dt = —-iU@). (37)
A solution of this equation is
U(t) = Uexp(—ir) (38)
or
 exp(—itN)exp(ip) exp(itN) = exp(i¢) exp(—it), 39)

which could have been got by taking the limit in equation (12). Now equation (39)
implies that
exp(—itN) ¢pexp(itN) = ¢p—t¢, (40)
which shows that
[N, ¢] = —i. (41)

Because of its lack of generality equation (41) is merely a formal result and is not
as important as the general result (35).

The following remarks concerning the approach adopted in this paper are in order.
In deriving equation (8) we have made use of only (1), (2) and (3), which are
definitely coordinate free. However, in finite space, these equations do imply the
matrix representations (4) and (5) for the operators N and U. Therefore, the
usefulness of the present discussion lies essentially in considering the limit as
n — o0, when the second term on the right-hand side of equation (8) vanishes and we
obtain the standard CCR.
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